

A Peer-to-Peer Communication Architecture for Networked Games

Shervin Shirmohammadi, Abdelfettah Diabi, Pascal Lacombe

Distributed Collaborative Virtual Environments Research Lab (DISCOVER Lab)
University of Ottawa, Ottawa, Canada

[shervin | adiabi]@discover.uottawa.ca

Abstract

Although IP multicast can be used to support message
transmission among players in large network games
running on Intranets, it is mostly not available on the
Internet. Alternatively, researches have in recent years
proposed the use of Application Layer Multicasting
techniques (ALM) to alleviate this problem and to
allow a somewhat scalable message passing among
peers in a group of users on the Internet. In this paper,
we propose a peer-to-peer communication
architecture for networked games. Our architecture
uses both proxies and end-systems to provide a
number of communication services: 1) best effort LAN
multicast 2) timely-reliable LAN multicast 3) best
effort P2P delivery on the Internet 4) timely-reliable
P2P delivery on the Internet, and 5) any combination
of the above, including LAN to Internet translation
and vice versa. Our filed trials using a shoot‘em up
game show that the proposed framework performs
satisfactorily over the Internet.

1. Introduction

Like any other real-time network application,
multiplayer networked games have specific
requirements from their underlying transmission
mechanism. In such games, players are required to
participate in various activities in real time and to
perform tasks in a synchronous manner, sometimes in
a closely-coupled form that requires precise
coordination between the parties, who otherwise are
connected to the Internet from geographically
distributed locations. It has been suggested that in such
environments, the end-to-end delay should not exceed
100 msec [6]. Other studies have loosened this
requirement to 200 msec as acceptable delay [4]. The
reason for such strict requirement is the fact that such
games, or distributed simulations, are naturally real-
time and highly reactive multi-user processes where
users interact based on the each other's actions and
reactions; therefore requiring very low transmission
delay of updates.

One of the problems, which has been studied and
addressed to some extent in recent years, is network
lag. It is a known fact that lag adversely affects
networked games. When a user participates in such a
game, his/her interactions with others users and/or the
environment must be sent to other participants over
the network, such that all entities involved are updated
with that user’s latest state. Because of network
limitations and traffic conditions, some of these
“updates” are lost, or delayed. In fact, network lag is
present in any distributed application, such as web
browsing, email, and audio/video streaming. However,
due to its requirements for highly interactive
operations, networked games are specially susceptible
to packet loss and delay.

Much research has been done to compensate for
network lag in order to provide better quality for
distributed simulations. Some of these studies provide
receiver-initiated and selectively-reliable transport
protocols [5] that can be used to deliver important
messages with a high degree of reliability, while
others use sender-initiated approaches to transmit key
updates with guaranteed reliability [8]. The IEEE DIS
standard [3] has also been successfully used in
controlled environment with vast resources, mostly for
military simulations. These approaches; however, are
all based on IP multicasting and although they achieve
good results in Intranet environment, they are not
readily deployable on the Internet.

The lack of applicability of IP multicasting on the
Internet has been well documented [1][2]. Reasons
include scalability, the fact that IP Multicasting is
designed for a hierarchical routing infrastructure and
does not scale well in terms of supporting large
number of concurrent groups, the deployment hurdles
caused by manual configuration at routers and Internet
Service Providers’ unwillingness to implement IP
multicasting, and marketing reasons due to the
undefined billing at the source (content provider) and
receivers.

An alternative has therefore been proposed to shift
multicast support from the networking layer to end

systems. This is Application Layer Multicasting
(ALM). In ALM, data packets are replicated at end-
hosts instead of at routers. The end-hosts form an
overlay network, and the goal of ALM is to construct
and maintain an efficient overlay for data
transmission. This is demonstrated in Figure 1. Since
the routing information is maintained by the
application, it is more scalable than IP multicasting
since it can support large number of concurrent
groups. Also, because ALM needs no infrastructure
support, it is fully deployable on the Internet. In
theory, Content Providers can deliver bandwidth-
intensive contents such as TV programs and
interactive networked games to vast number of clients
via the Internet by using ALM. This was impractical
before because the bottleneck bandwidth between
content providers and consumers is considerably less
than the natural consumption rate of such media.

a b

Figure 1. Network layer multicasting (a)

versus application layer multicasting (b): square
nodes are routers and circular nodes are end-hosts.

However, ALM does come with a tradeoff: more
bandwidth and delay (compared to IP multicasting) for
the sake of supporting more users and scalability. But
it has been shown that ALM-based algorithms can
have “acceptable” performance penalties with respect
to IP Multicasting, and compared to other practical
solutions [9].

In this article, we design, deploy, and test an ALM
based protocol that can support networked games
between players on the Intranet and on the Internet
simultaneously. Our protocol, called the Hybrid
Distributed Simulation Protocol (HDSP), supports
both best-effort delivery, for frequently occurring
messages, and reliable delivery for important or “key”
messages. We use a sender-initiated approach to
ensure guaranteed delivery of the key messages.
Furthermore, we couple an in-house developed
multiplayer game with our proposed protocol, and
demonstrate that home users and LAN users can be
supported simultaneously with satisfactory results.
Due to usage of an appropriate ALM algorithm, our
approach is more scalable than client-server

approaches, while it is also more practical and
deployable than IP-multicast based approaches.

2. Multi-user Networked Games

While a lot of studies have addressed many transport
issues related to distributed simulations in general
[10][11][12][13] [14], they fail to fulfill collaboration
needs mainly because they do not consider the
properties of collaboration data itself. The general
assumption in distributed simulations is that objects
transmit update messages often, and that the latest
state of things can be determined by techniques such
as dead-reckoning algorithms because they are
somewhat predictable. Experience has shown that
these assumptions work very well for scenarios such
as simulation of battlefields or multi-user avatar-based
games. In fact most of these systems have been
specifically designed for either military purposes or
games and they do a good job at that. In shoot-em-up
games or battlefield scenarios, people, tanks, planes,
and other war machines are almost constantly moving
in a short-term predictable manner. A plane's course of
flight can be extrapolated from its position and
velocity vector. Also, a lost update message is usually
followed by many other update messages, or keep-
alive messages. However, these assumptions fail for
Collaborative Virtual Environments (CVE). In fact in
CVEs the conditions can be quite the opposite: shared
objects often do not send continuous update messages,
and when they do it is not necessarily in a predictable
manner. When coordinating closely-coupled
collaborative tasks in CVEs, there is no room for
"guessing" the state of a shared object. All participants
must reliably receive the most current state, or
collaboration might fail. We believe a framework on
top of which simulation applications are written must
provide transport services suitable for all data: those
that do not require reliability (regular updates) and
those that do require reliability (key updates). With
this in mind, let us have a closer look at how the
Framework functions.

3. Communication framework

In this paper we propose HDSP (Hybrid Distributed
Simulation Protocol) tailored to provide transport
services suitable for all types of simulation data.
HDSP is a multi-source protocol that provide best
effort LAN multicast, timely-reliable LAN multicast,
best effort P2P delivery on the Internet, timely-reliable
P2P delivery on the Internet, and any combination of
the above.

3. 1. Best effort LAN multicast

For data transmitted in the LAN, HDSP uses best
effort LAN multicast mode if transmitted data does
not require reliability. If data packets are not received
by one or many users in the LAN then retransmission
is not enforced. For this, HDSP simply implements
normal UDP protocol.

3. 2. Timely-reliable LAN multicast

HDSP uses Timely reliable LAN multicast for data
that must be received reliably and in a timely manner
by all members. For this mode, an ACK-based reliable
multicast protocol is utilized. When a packet is sent, a
timer is invoked. Acknowledgements equal to the
number of receivers should be received by the sender;
otherwise the packet will be retransmitted after the
timer expires.

3.3.Best effort P2P delivery on the internet

On the Internet, for data that must be received by a
single known member in the group HDSP utilizes best
effort P2P delivery. Data transmitted does not require
reliability; therefore no retransmission is handled by
this protocol. For this a normal UDP is used.

3.4. Timely-reliable P2P delivery on the
 Internet

For data that must be received by a single known
member in the group in a timely manner, HDSP
utilizes Timely-reliable P2P delivery. Data transmitted
requires reliability; therefore retransmission is handled
by this protocol in case of lost or damaged packets.
For this mode, an ACK-based reliable protocol is
utilized. When a packet is sent a timer is invoked.
Acknowledgements equal to the number of connected
peers should be received by the sender; otherwise the
packet will be retransmitted after the timer expires.

 3.5. Combination of the above services

The strength of HDSP appears clearly in incorporating
ALM-tree to combine the above four services. HDSP
is a multi-source protocol designed and implemented
on top of a single multicast tree. The nodes of the tree
consist of a Hybrid node which is placed in the LAN
or on the Internet, other users in the LAN, and home
users, as shown in figure 2. A hybrid node has all the
information necessary to construct the ALM tree,
maintain it and rearrange it in case of late joiners or
early leavers. The new joiner send a request of joining

to the Hybrid node (the root of the tree and the
mediator between the tree and the LAN), who in
return accepts it as a child node or redirects it to
another node to be his parent. The process of
accepting or redirecting a child node is based on the
out-degree parameter. The out-degree parameter
represents the maximum number of children a single
node can have.

LAN
Internet

Hybrid Node

 Figure 2. ALM tree construction. The thin lines
indicate physical connection (LAN or Internet);
whereas the thick lines indicate the overlay
network, with the arrow going from parent to
child.

After a tree is constructed, a message sent on the LAN
is received by everyone on the LAN, including the
Hybrid node through a multicast socket. The hybrid
node will relay the message to its children, who in turn
relay it to their children, and so on. HDSP provides
support for both reliable and unreliable multicast. For
unreliable multicast we use UDP multicast on LAN
and unreliable ALM outside of LAN but for reliable
multicast we use SCTP [9] on LAN and timely-
reliable ALM (SCTP is implemented between children
and parent) outside of LAN. The hybrid node will
keep a record of the tree state and updates it every
time when a user joins by checking every node in the
tree for the possibility of having a child based on the
out-degree. Every node in the tree will send a keep-
alive message to its adjacent nodes to make sure that it
did not crash or leave the session. In the case of no
response to the keep-alive message then the node will
have to relocate it self by sending a relocating request
to the hybrid node.

HDSP is basically an API-based communication
framework that provides all of the above possibilities
for communication. It is hybrid because we are using
both a P2P architecture (home users between each
other) and proxy to user architecture (Hybrid node to
its children at home). Also, it is not mandatory to have
users at home if it is only a LAN game, and it is not
mandatory to have LAN players if this is only being
played at home, in which case one of the players
(whoever starts the game) can act as the hybrid node.

4. Game Design

Our main objective when we were designing our
military tank simulation “Panzer Blaster” was to
showcase the usability and advantages of HDSP in a
distributed simulation environment. Since
synchronization between users is critical for a decent
experience in real-time distributed applications, HDSP
would face an important test in terms of user end to
end delay. We chose OpenSceneGraph (OSG), an
object orientated OpenGL graphics library for C++, as

our rendering toolkit since it’s very well designed and
uses a scene graph approach. This means the objects
in our scene are placed in a tree for faster rendering
and better data organization. Our scene contains four
basic elements: a hud display, a terrain with
vegetation, a sky and a list of users. Each user object
contains a tank, a number of bullets and a list of
variables needed to create a player.

a

b

Figure 3. a) A bullet is shot, this triggers a key message b) Movement messages are being sent, the tank moves
accordingly and predicts the next movement

The “Panzer Blaster” simulation is run as a separate
thread from the HDSP framework. It shares global
buffers for receiving and sending messages. Those
buffers are the only way in which the simulation needs
to communicate with the HDSP framework. When a
user wants to connect to a session, a key update
message is sent to retrieve a user id from the server.
This ID is then used to create and identify the user
object for that specific player. The messages sent to
move and connect a user are encoded bitwise into a
string. Movement messages contain XYZ position,
direction, speed and angle of the tank’s moving parts,
while the shoot messages contain the XYZ origin and
direction. All these messages also contain the type of
message and the user id so each client knows which
user to update. These messages are then put in the
sending buffer and are specified as key or none-key
messages depending on the situation. As depicted in
figure3.a when a bullet is shot a key message will be
triggered and immediately sent to adjacent users.
Figure3.b shows a scenario of movement messages
being sent to adjacent users. The receivers in this case
will predict the next movement of the tank. The rest of
the work for sending and redirecting is done by the
HDSP framework. The receiving buffer is looked at
every frame for new messages. They are decoded and
applied to the scene as soon as they are received.

Every tank has a controller and a callback node to
make it move. The callback nodes are called on a per
frame basis during the traversal of the scene graph.
The callback node then calls an update method in the
controller to update the tank’s position if needed. The
same principal is applied to move a bullet after its
initial position has been calculated. When a message
to move a tank is received, it’s only a matter of
assigning its new position, speed and direction and the
tank will follow this route until the next message is
sent. To predict the tank’s movements, the previous
message is stored. It’s assumed that the tank is either
accelerating or stopping in a specific direction or axis
if the new message has a different speed. If the
message rate is higher then 3 per second, this
prediction is rather accurate and is still reasonably
good if only 1 message is sent per second

Messages are sent to adjacent nodes only when the
tank is moving or shooting, eliminating the need for
continuous bandwidth usage when nothing is
happening. Key messages are only used for specific
events, the rest are regarded as regular update
messages and are simply broadcasted using UDP
ALM. In our case key messages are used when one of
the following events happen: stopping, shooting and
the when moving from a stopped position. These

messages are vital to reliably reproduce the
movements of the tank on client machines. If we
completely disabled these key messages, most of the
time our tanks would continue moving for ever until
the next message is sent. Sometimes the tank did stop
approximately in the right spot but this was due to our
movement prediction. As expected, some of the
shooting messages where lost when not using key
updates.

5. Performance Evaluation

Performance evaluation was conducted in three
different homes having internet cable connection (two
computers were using Rojers connection in Ottawa
and one with videotron in Hull-Gatineau). One
machine was acting as the hybrid node. We set the
out-degree to be one such that we have two levels tree.

The Hybrid node sends messages every second for a
period of 5 minutes, resulting in 300 packets sent. The
receiving node forwards the packet to its children and
acknowledges the messages by sending an
acknowledgment to the parent. Each parent should
forward the acknowledgment message to his parent
until the hybrid node receives the acknowledgment
from all users. The Hybrid node will measure the
round trip time of the packet which is:

RTT = (time Ack is received - time packet was sent)/2

This is shown in figure 4.

5) Forward
Acknowledgment
Packet (X) from child

3) Acknowledge
Packet (X)

4) Acknowledge
Packet (X)

2) Forward
Packet (X)
to child

1) Send
Packet (X)

Hybrid Node

Figure 4. Test procedure for a period of 5mins

In table 1 we show the statistics that were measured
during the test:

Table 1. Average delay values in milliseconds.

Number of
pakets

Delay
average
to level
1(ms)

Delay
average to
level 2(ms)

Delay
average for
all nodes in
the
tree(ms)

300 38.30 130.6 84.45

5.1 Analysis

Analyzing the results we can see that the processing
time in the first child before forwarding the packet and
also the processing time of the ISPs have an impact of
the transmission delay. We deduce that 2- levels are
easily supported without violating the 200 ms end-to-
end delay. It is also obvious that the processing time
because of different ISPs has an impact on the delay
from one node to another. There for we deduce the
following:

1. In case the nodes are under the same ISPs,
level 3 will be easily supported and the
expected delay from the Hybrid node to the
3ed level is about 120-140 ms. It is not a
coincidence that even level 4 will be
supported with HDSP.

2. In case nodes are under different ISPs,
HDSP we will definitely support the third
level with the maximum average delay
around the threshold (200msec) or less.
However, level 4 might not be supported.

5.2 Subjective Evaluation

As expected the playing experience of “Panzer
Blaster” on a LAN was very good. Since the delay
was minimal all the messages got sent with constant
and minimum latency. As we continued to add
multiple levels (up to 6), we couldn’t perceive any
difference in the end to end delay of each user. The
playing experience didn’t change much when we
tested the simulation between home users. We
couldn’t say for sure whether the end to end delay
affected our playing but it was very playable and
similar to the LAN experience. We did notice more
warping then on the LAN but this is attributable to the
simulation itself and among other things its lack of
smoothing when applying the messages.

Conclusions

In this article, we demonstrated how application layer
multicasting can be used in conjunction with sender-

initiated reliable communication to support large-scale
networked games on the Internet. Our performance
evaluation results showed that 3 levels of users can be
supported in our architecture, with many users being
able to connect at each level.
Other than the related IP-multicast based protocols
mentioned, Mauve et al [6] present an architecture that
uses proxies to provide fairness between players, low
latency, congestion control, and robustness. However,
our work differs in that HDSP categorize the messages
as regular or key update messages which is an
essential part in providing reliability for important
messages and reducing network congestion by
acknowledging only key messages. Our work also
differs in a sense that the Hybrid node has the tree
structure, regulates the growth of the tree by assigning
new children to their prospective parents and
rearranges the tree in case of nodes leaving the tree or
crashing.

Acknowledgements

The authors acknowledge the financial support of
Natural Sciences and Engineering Research Council of
Canada.

References

[1] A. El-Sayed and V. Roca, “A Survey of Proposals
for an Alternative Group Communication
Service,” IEEE Network, 17(1), pp. 46-51, Feb.
2003.

[2] B. Zhang, S. Jamin, and L. Zhang, “Host
multicast: A framework for delivering multicast to
end users,” In Proc IEEE INFOCOM, June 2002.

[3] IEEE Standard for Distributed Interactive
Simulation, Application Protocols, IEEE 1278-
1995.

[4] K.S. Park and Robert V. Kenyon, "Effects of
Network Characteristics on Human Performance
in a Collaborative Virtual Environment", IEEE
International Conference on Virtual Reality (VR
'99), Houston, Texas, March 1999.

[5] M Pullen, "Reliable Multicast Network Transport
for Distributed Virtual Simulation", Proc. IEEE
Workshop on Distributed Interactive Simulations
and Ral-Time Applications (DIS-RT '99),
Greenbelt, Maryland, October 1999.

[6] M. Mauve, S. Fischer, and J Widmer, "A generic
proxy system for networked computer games",
Netgames 2002, Braunschweig,
Germany, 2002.

[7] M.M. Wloka, "Lag in Multiprocessor VR",
Presence: Teleoperators and Virtual Environments
(MIT Press), Vol. 4, No. 1, Spring 1995.

[8] S. Shirmohammadi and N.D. Georganas, "An
End-to-End Communication Architecture for
Collaborative Virtual Environments", Computer
Networks, Vol. 35, No. 2-3, Feb. 2001, pp. 351-
367.

[9] Y. Chu, S.G. Rao, S. Seshan, and H.S. Zhang, “A
Case for End System Multicast”, IEEE Journal on
Selected Areas in Communication, special issue
on networking support for multicast, 2002,
Volume 20, Issue 8, pp. 1456-1471.

[10] B. Blau et al, "Networked Virtual Environments",
Proc. ACM SGGRAPH, 1992, pp. 157-164.

[11] T. Funkhouser, "Network Topologies for
Scalable Multi-User Virtual Environments", Proc.
IEEE Virtual Reality Annual International
Symposium, 1996, pp. 222-228.

[12] M. Pullen et al, "Limitations of Internet Protocol
Suite for Distributed Simulation in the Large
Multicast Environment ", RFC 2502, February
1999.

[13] M.R. Macedonia, and M.J. Zyda, "A Taxonomy
for Networked Virtual Environments", IEEE
Multimedia Magazine, January-March 1997, pp.
48-56.

[14] S. Seidensticker et al, "Scenarios and Appropriate
Protocols for Distributed Interactive Simulation",
Internet draft, draft-myjak-lsma-scenarios-02,
march 1997.

